Publicación:
Tecnología de asistencia: exoesqueletos robóticos en rehabilitación

dc.contributor.authorAlfonso Mantilla, Jose Ivanspa
dc.contributor.authorMartínez Santa, Jaimespa
dc.date.accessioned2017-06-23 04:51:53
dc.date.accessioned2022-06-14T21:52:18Z
dc.date.available2017-06-23 04:51:53
dc.date.available2022-06-14T21:52:18Z
dc.date.issued2017-06-23
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.33881/2011-7191.mct.10207
dc.identifier.eissn2463-2236
dc.identifier.issn2011-7191
dc.identifier.urihttps://repositorio.ibero.edu.co/handle/001/4478
dc.identifier.urlhttps://doi.org/10.33881/2011-7191.mct.10207
dc.language.isospaspa
dc.publisherCorporación Universitaria Iberoamericanaspa
dc.relation.bitstreamhttps://revmovimientocientifico.ibero.edu.co/article/download/mct.10207/936
dc.relation.citationeditionNúm. 2 , Año 2016 : Revista Movimiento Científicospa
dc.relation.citationendpage90
dc.relation.citationissue2spa
dc.relation.citationstartpage83
dc.relation.citationvolume10spa
dc.relation.ispartofjournalMovimiento Científicospa
dc.relation.referencesAach, M., Cruciger, O., Sczesny-Kaiser, M., Hoffken, O., Meindl, R., Tegenthoff, M., et al. (2014). Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J, 14(12), 2847-2853.spa
dc.relation.referencesAgrawal, S. K., Banala, S. K., Fattah, A., Sangwan, V., Krishnamoorthy, V., Scholz, J. P., & Hsu, W. L. (2007). Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng, 15(3), 410-420.spa
dc.relation.referencesAlavi, N., Herrnstadt, G., Randhawa, B. K., Boyd, L. A., & Menon, C. (2015). Bimanual elbow exoskeleton: Force based protocol and rehabilitation quantification. Conf Proc IEEE Eng Med Biol Soc, 2015, 4643-4646.spa
dc.relation.referencesAsselin, P. K., Avedissian, M., Knezevic, S., Kornfeld, S., & Spungen, A. M. (2016). Training Persons with Spinal Cord Injury to Ambulate Using a Powered Exoskeleton. J Vis Exp(112).spa
dc.relation.referencesBortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons, J. L., & Contreras-Vidal, J. L. (2015). The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil, 12, 54.spa
dc.relation.referencesBuesing, C., Fisch, G., O'Donnell, M., Shahidi, I., Thomas, L., Mummidisetty, C. K., et al. (2015). Effects of a wearable exoskeleton stride management assist system (SMA(R)) on spatiotemporal gait characteristics in individuals after stroke: a randomi zed controlled trial. J Neuroeng Rehabil, 12, 69.spa
dc.relation.referencesChen, G., Chan, C. K., Guo, Z., & Yu, H. (2013). A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit Rev Biomed Eng, 41(4-5), 343-363.spa
dc.relation.referencesCooper, R. A., Dicianno, B. E., Brewer, B., LoPresti, E., Ding, D., Simpson, R., et al. (2008). A perspective on intelligent devices and environments in medical rehabilitation. Med Eng Phys, 30(10), 1387-1398.spa
dc.relation.referencesEsquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil, 91(11), 911-921.spa
dc.relation.referencesEvans, N., Hartigan, C., Kandilakis, C., Pharo, E., & Clesson, I. (2015). Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil, 21(2), 122-132.spa
dc.relation.referencesFerrigno, G., Baroni, G., Casolo, F., De Momi, E., Gini, G., Matteucci, M., & Pedrocchi, A. (2011). Medical robotics. IEEE Pulse, 2(3), 55-61.spa
dc.relation.referencesFerris, P. (2010). Robotic lower limb orthosis: goals obstacles and current research. Paper presented at the The 34 th Annual Meerting of the American Sociaty of Biomechanics, Symposia: Robotic Lower Limb Ortheses and Prostheses.spa
dc.relation.referencesFisahn, C., Aach, M., Jansen, O., Moisi, M., Mayadev, A., Pagarigan, K. T., et al. (2016). The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review. Global Spine J, 6(8), 822-841.spa
dc.relation.referencesFleischer, C., Wege, A., Kondak, K., & Hommel, G. (2006). Application of EMG signals for controlling exoskeleton robots. Biomed Tech (Berl), 51(5-6), 314-319.spa
dc.relation.referencesFrancis, P., & Winfield, H. N. (2006). Medical robotics: the impact on perioperative nursing practice. Urol Nurs, 26(2), 99-104, 107-108.spa
dc.relation.referencesFrench, J. A., Rose, C. G., & O'Malley, M. K. (2014). System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation. Proc ASME Dyn Syst Control Conf, 2014.spa
dc.relation.referencesGillesen, J. C., Barakova, E. I., Huskens, B. E., & Feijs, L. M. (2011). From training to robot behavior: towards custom scenarios for robotics in training programs for ASD. IEEE Int Conf Rehabil Robot, 2011, 5975381.spa
dc.relation.referencesHornby, T. G., Kinnaird, C. R., Holleran, C. L., Rafferty, M. R., Rodriguez, K. S., & Cain, J. B. (2012). Kinematic, muscular, and metabolic responses during exoskeletal-, elliptical-, or therapist-assisted stepping in people with incomplete spinal cord injury. Phys Ther, 92(10), 1278-1291.spa
dc.relation.referencesJimenez-Fabian, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys, 34(4), 397-408.spa
dc.relation.referencesKao, P. C., Lewis, C. L., & Ferris, D. P. (2010a). Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech, 43(2), 203-209.spa
dc.relation.referencesKao, P. C., Lewis, C. L., & Ferris, D. P. (2010b). Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. J Biomech, 43(7), 1401-1407.spa
dc.relation.referencesKao, P. C., Lewis, C. L., & Ferris, D. P. (2010c). Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. J Neuroeng Rehabil, 7, 33.spa
dc.relation.referencesKoller, J. R., Jacobs, D. A., Ferris, D. P., & Remy, C. D. (2015). Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. J Neuroeng Rehabil, 12, 97.spa
dc.relation.referencesKozlowski, A. J., Bryce, T. N., & Dijkers, M. P. (2015). Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Top Spinal Cord Inj Rehabil, 21(2), 110-121.spa
dc.relation.referencesKrebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D., & Hogan, N. (2007). Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 15(3), 327-335.spa
dc.relation.referencesLajeunesse, V., Vincent, C., Routhier, F., Careau, E., & Michaud, F. (2016). Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol, 11(7), 535-547.spa
dc.relation.referencesLewis, C. L., & Ferris, D. P. (2011). Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech, 44(5), 789-793.spa
dc.relation.referencesLi, Z., Wang, B., Sun, F., Yang, C., Xie, Q., & Zhang, W. (2014). sEMG-based joint force control for an upper-limb power-assist exoskeleton robot. IEEE J Biomed Health Inform, 18(3), 1043-1050.spa
dc.relation.referencesLim, H. O., & Takanishi, A. (2007). Biped walking robots created at Waseda University: WL and WABIAN family. Philos Trans A Math Phys Eng Sci, 365(1850), 49-64.spa
dc.relation.referencesLo, H. S., & Xie, S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys, 34(3), 261-268.spa
dc.relation.referencesLouie, D. R., & Eng, J. J. (2016). Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil, 13(1), 53.spa
dc.relation.referencesMasiero, S., Carraro, E., Ferraro, C., Gallina, P., Rossi, A., & Rosati, G. (2009). Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. J Rehabil Med, 41(12), 981-985.spa
dc.relation.referencesMiller, L. E., Zimmermann, A. K., & Herbert, W. G. (2016). Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl), 9, 455-466.spa
dc.relation.referencesOlaya, A. F. R. (2009). Sistema robótico multimodal para análisis y estudios en biomecánica, movimiento humano y control neuromotor. Universidad Carlos III de Madrid.spa
dc.relation.referencesPehlivan, A. U., Rose, C., & O'Malley, M. K. (2013). System characterization of RiceWrist-S: a forearm-wrist exoskeleton for upper extremity rehabilitation. IEEE Int Conf Rehabil Robot, 2013, 6650462.spa
dc.relation.referencesPopovic, D. B., & Popovic, M. B. (2006). Hybrid assistive systems for rehabilitation: lessons learned from functional electrical therapy in hemiplegics. Conf Proc IEEE Eng Med Biol Soc, 1, 2146-2149.spa
dc.relation.referencesReinkensmeyer, D. J., Akoner, O., Ferris, D. P., & Gordon, K. E. (2009). Slacking by the human motor system: computational models and implications for robotic orthoses. Conf Proc IEEE Eng Med Biol Soc, 2009, 2129-2132.spa
dc.relation.referencesRenjewski, D., & Seyfarth, A. (2012). Robots in human biomechanics—a study on ankle push-off in walking. Bioinspir Biomim, 7(3), 036005.spa
dc.relation.referencesRocon, E., Belda-Lois, J. M., Ruiz, A. F., Manto, M., Moreno, J. C., & Pons, J. L. (2007). Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng, 15(3), 367-378.spa
dc.relation.referencesSawicki, G. S., & Ferris, D. P. (2008). Mechanics and energetics of level walking with powered ankle exoske le tons. J Exp Biol, 211(Pt 9), 1402-1413.spa
dc.relation.referencesSawicki, G. S., & Ferris, D. P. (2009). Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. J Exp Biol, 212(Pt 1), 21-31.spa
dc.relation.referencesSczesny-Kaiser, M., Hoffken, O., Aach, M., Cruciger, O., Grasmucke, D., Meindl, R.,... Tegenthoff, M. (2015). HAL(R) exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil, 12, 68.spa
dc.relation.referencesSylos-Labini, F., La Scaleia, V., d'Avella, A., Pisotta, I., Tamburella, F., Scivoletto, G., ... Ivanenko, Y. P. (2014). EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci, 8, 423.spa
dc.relation.referencesTang, Z., Zhang, K., Sun, S., Gao, Z., Zhang, L., & Yang, Z. (2014). An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors (Basel), 14(4), 6677-6694.spa
dc.relation.referencesvan den Bogert, A. J. (2003). Exotendons for assistance of human locomotion. Biomed Eng Online, 2, 17.spa
dc.relation.referencesYakub, F., Md Khudzari, A. Z., & Mori, Y. (2014). Recent trends for practical rehabilitation robotics, current challenges and the future. Int J Rehabil Res, 37(1), 9-21.spa
dc.relation.referencesYang, A., Asselin, P., Knezevic, S., Kornfeld, S., & Spungen, A. M. (2015). Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury. Top Spinal Cord Inj Rehabil, 21(2), 100-109.spa
dc.relation.referencesYoshimoto, T., Shimizu, I., & Hiroi, Y. (2016). Sustained effects of once-a-week gait training with hybrid assistive limb for rehabilitation in chronic stroke: case study. J Phys Ther Sci, 28(9), 2684-2687.spa
dc.relation.referencesYoshimoto, T., Shimizu, I., Hiroi, Y., Kawaki, M., Sato, D., & Nagasawa, M. (2015). Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control. Int J Rehabil Res, 38(4), 338-343.spa
dc.relation.referencesZhang, F., Fu, Y., Zhang, Q., & Wang, S. (2015). Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Biomed Mater Eng, 26 Suppl 1, S665-672.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revmovimientocientifico.ibero.edu.co/article/view/mct.10207spa
dc.subjectDispositivo exoesqueletospa
dc.subjectRehabilitaciónspa
dc.subjectRobóticaspa
dc.subjectMarchaspa
dc.titleTecnología de asistencia: exoesqueletos robóticos en rehabilitaciónspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localArtículosspa
dc.type.localArticleseng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos