Publicación:
Aplicación de métodos acústicos lineales y no lineales en parálisis cordales unilaterales

dc.contributor.authorElisei, Natalia Gabrielaspa
dc.contributor.authorEvin, Diego Alexisspa
dc.contributor.authorGoméz Fernández, Franciscospa
dc.contributor.authorGurlekian, Jorge Albertospa
dc.date.accessioned2014-10-06 00:00:00
dc.date.accessioned2022-06-14T20:55:13Z
dc.date.available2014-10-06 00:00:00
dc.date.available2022-06-14T20:55:13Z
dc.date.issued2014-10-06
dc.format.mimetypeapplication/pdfspa
dc.identifier.eissn2463-2252
dc.identifier.issn1657-2513
dc.identifier.urihttps://repositorio.ibero.edu.co/handle/001/2996
dc.identifier.urlhttps://arete.ibero.edu.co/article/view/354
dc.language.isospaspa
dc.publisherCorporación Universitaria Iberoamericanaspa
dc.relation.bitstreamhttps://arete.ibero.edu.co/article/download/354/319
dc.relation.citationeditionNúm. 1 , Año 2012spa
dc.relation.citationendpage32
dc.relation.citationissue1spa
dc.relation.citationstartpage24
dc.relation.citationvolume12spa
dc.relation.ispartofjournalAretéspa
dc.relation.referencesAasen, T. (1993). Chaos theory applied to the caloric response of the vestibular system. Computers and Biomedical Research (26):556-567.spa
dc.relation.referencesBergé, P., & Pomeau y Vidal, C. (1984). Orderwithin chaos: towards a deterministic approach to turbulence. New York: U.S.A.,Wiley.spa
dc.relation.referencesBerry, D. A., Herzel, H., Titze, I. R., & Story, B.H. (1996). Bifurcations in excised larynx experiments. Journal of Voice (10): 29-138.spa
dc.relation.referencesBielamowicz, S., Kreiman, J., Gerratt, B. R.,Dauer, M. S., & Berke, G. S. (1996). Comparison of voice analysis systems for perturbation measurements. J. Speech Hear.Res. (39): 126–134.spa
dc.relation.referencesEckmann, J. P., & Ruelle, D. (1992). Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems.Physica D (56), 185–187.spa
dc.relation.referencesGiovanni, A., Ouaknine, M., & Triglia, J. M.(1999). Determination of largest Lyapunovexponents of vocal signal: application to unilateral laryngeal paralysis. J. Voice (13:341-354.spa
dc.relation.referencesGstoettner, W., Baumgartner, W., Hamzavi, J.,Felix, D., Svozil, K., Meyer, R., y otros(1996). Auditory fractal random signals:Experimental data and clinical application.Acta Otolaryngol (116): 222-223.spa
dc.relation.referencesHerzel, H., Berry, D., Titze, I. R., & Saleh, M.(1994). Analysis of vocal disorders with methods from nonlinear dynamics. J. Speach Hear. Res. (37): 1008-1019.spa
dc.relation.referencesHilborn, R. (2001). Chaos and Nonlinear Dynamics.An Introduction for Scientists and Engineers(2nd ed.). Oxford Univerity Press.spa
dc.relation.referencesHirano, M. (1981). Clinical Examination of thevoice. New York: U.S.A. Springer Verlag.spa
dc.relation.referencesHolzfuss, J., & Lauterborn, W. (1989). Lyapunov exponents from a time series of acousticchaos. Phys. Rev. A (39): 2146–2152.spa
dc.relation.referencesHorii, Y. (1979). Fundamental Frequency Perturbation Observed in Sustained Phonation.Journal of Speech and Hearing Research (22): 5-19.spa
dc.relation.referencesJiang, J., Zhang, Y., & Ford, C. N. (2003).Nonlinear dynamics of phonations in excised larynx experiments. J. Acoust. Soc. Am114 (4 pt1): 2198-205spa
dc.relation.referencesKumar, A., & Mullick, S. K. (1996). Nonlinear dynamical analysis of speech. J.Acoust.Soc. Am. (100): 615–629.spa
dc.relation.referencesMilenkovic, P. (1987). Least mean square measures of voice perturbation. J. Speech Hear. Res. (30): 529–538.spa
dc.relation.referencesNarayanan, S. S., & Alwan, A. A. (1995). A nonlinear dynamical systems analysis of fricative consonants. J. Acoust. Soc. Am. (97):2511.spa
dc.relation.referencesPeitgen, H. O., Jurgens, H., & Saupe, D. (1992). Chaos and Fractals, New Frontiers of Science.New York: U.S.A. Springer-Verlag.spa
dc.relation.referencesTitze, I. R. (1995). Workshop on acoustic voice analysis; Summary Statement. National Center for Voice and Speech, Denver.spa
dc.relation.referencesTitze, I. R., Horii, I., & Scherer, R. C. (1987). Some technical considerations in voice perturbationmeasurements. J Speech HearingResearch (30): 252-260.spa
dc.relation.referencesWolf, A., Swift, J. B., Swinney, H. L., & Vastano,J. A. (1985). Determining Lyapunov exponentsfrom a time series. Physica D (16):285–317.spa
dc.relation.referencesYu, P., Garrel, R., Nicollas, R., Ouaknine, M.,& Giovanni, A. (2007). Objective VoiceAnalysis in Dysphonic Patients: New Data Including Nonlinear Measurements. FoliaPhoniatr Logop , 1 (59): 20-30.spa
dc.relation.referencesYu, P., Ouaknine, M., & Giovanni, A. (2000).Intérêt clinique du calcul des coefficients de Lyapunov pour l’analyse objective desdysphonies. Rev. laryngol. otol. Rhinol, 5(121): 301-305.spa
dc.relation.referencesZhang, Y., & Jiang, J. (2003). Nonlinear dynamicanalysis of signal typing of pathologicalhuman voices. Electron. Lett. (39):1021–1023.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://arete.ibero.edu.co/article/view/354spa
dc.subjectAlgorithmseng
dc.subjectVocal cord paralysiseng
dc.subjectAnalytical methodseng
dc.subjectAlgoritmosspa
dc.subjectParálisis de los pliegues vocalesspa
dc.subjectTécnicas de análisisspa
dc.titleAplicación de métodos acústicos lineales y no lineales en parálisis cordales unilateralesspa
dc.title.translatedApplication of acoustic methods linear and nonlinear in chordal unilateral paralysiseng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localSección Investigativaspa
dc.type.localInvestigative Sectioneng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos
Colecciones