Publicación:
Efectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esquelético

dc.contributor.authorSánchez Niño, Adriana Isabelspa
dc.date.accessioned2014-07-11 15:32:29
dc.date.accessioned2022-06-14T21:51:26Z
dc.date.available2014-07-11 15:32:29
dc.date.available2022-06-14T21:51:26Z
dc.date.issued2014-07-11
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.33881/2011-7191.%x
dc.identifier.eissn2463-2236
dc.identifier.issn2011-7191
dc.identifier.urihttps://repositorio.ibero.edu.co/handle/001/4350
dc.identifier.urlhttps://doi.org/10.33881/2011-7191.%x
dc.language.isospaspa
dc.publisherCorporación Universitaria Iberoamericanaspa
dc.relation.bitstreamhttps://revmovimientocientifico.ibero.edu.co/article/download/163/135
dc.relation.citationeditionNúm. 1 , Año 2012 : Revista Movimiento Científicospa
dc.relation.citationendpage113
dc.relation.citationissue1spa
dc.relation.citationstartpage102
dc.relation.citationvolume6spa
dc.relation.ispartofjournalMovimiento Científicospa
dc.relation.referencesSolomon, A. (2006). Modifying muscle mass the endocrine perspective. Rev. Journal of Endocrinology, 2 (191), 349–360. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17088404.spa
dc.relation.referencesAckerman, M. (1994). Ion channels and clinical disease. Rev. New England Journal of Medicine, (336), 1 -22. Recuperado el 16 de agosto del 2012. Disponible en: http://www.uwyo.edu/ neuron/ionchanneldisease.pdfspa
dc.relation.referencesAlbert, L. (1994) Biología molecular de la célula. 3ª ed. España: Omega.spa
dc.relation.referencesAlvis, K., & Estrada, Y. (2003). Relación teórica entre actividad física y sinetesis de distrofina. Trabajo para optar al Titulo de Grado de Fisioterapeuta, 1 -120. Universidad Nacional de Colombia.spa
dc.relation.referencesAronson, D. (1998). Exercise stimulates c – Jun NH2 kinase activity and c – Jun transcriptional activity in human skeletal muscle. Biochemistry biophysics Res Commun. Rev. Science Direct. 1(251), 106 – 110. Recuperado el 16 de agosto del 2012. Disponible en: http://www.sciencedirect.com/science/ article/pii/S0006291X98994359.spa
dc.relation.referencesAstrand. (1997). Fisiología del esfuerzo y del deporte. España: Harcourt Brace.spa
dc.relation.referencesBaar, K. (2002). Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Rev. FASEB Journal. 16(14),1879. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/ 12468452spa
dc.relation.referencesBiolo, G. (1995). Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Rev. American Physiological Society, 3 (268), 514- 520. Recuperado el 19 de agosto del 2012. Disponible en http:// ajpendo.physiology.org/content/268/3/E514.shortspa
dc.relation.referencesBiolo, G. (1997). An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Rev. American Journal of Physiology-Endocrinology And Metabolism. 1 (273), E122-129. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/9252488spa
dc.relation.referencesBerg, M (2008). Bioquímica. Barcelona, España: Reverte.spa
dc.relation.referencesBohé, J. (2003). Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. Rev. Journal Physiology. (552), 315. Recuperado el 25 de septiembre de 2012. Disponible en: http://jp.physoc.org/content/552/1/315.abstractspa
dc.relation.referencesBrower, R. (2009). Consequences of bed rest. Rev. Critical Care Medicine. (37), S422–S428. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm. nih.gov/pubmed/20046130spa
dc.relation.referencesCastro, A. (2001). Efectos del Óxido Nítrico en la fisiología muscular. Rev. Efdeportes. Recuperado el 16 de agosto de 2011. Disponible en: http://www.efdeportes.com/efd39/ on.htmspa
dc.relation.referencesCarraro, F. (1990). Effect of exercise and recovery on muscle protein synthesis in human subjects. Rev. American Journal Physiology. (259), E470 - E476. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/2221048spa
dc.relation.referencesConnor, MK. (2000). Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions. Rev. Journal Applied Physiology. ( 88), 1601–1606. Recuperado el 25 de septiembre de 2012. Disponible en: http://jap. physiology.org/content/88/5/1601spa
dc.relation.referencesCostill, D. (1979). Adaptations In skeletal muscle following strength training. J Appl Physiol, 1(46), 96-99. Recuperado el 20 de marzo de 2011. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/37209spa
dc.relation.referencesDietze, G. (1982). New aspects of the blood flow augmenting and insulin-like activity of muscle exercise: possible involvement of the kallikreinkinin-prostaglandin system. Klin Wochenschr, (9), 429 – 444. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/ pubmed/6806524spa
dc.relation.referencesDonato, D. (2012). Aerobic Exercise Intensity Affects Skeletal Muscle Myofibrillar Protein Synthesis and Anabolic Signaling in Young Men. Tesis para optar el título de Magister en Ciencias y Kinesiología. Universidad de Hamilton Ontario.spa
dc.relation.referencesFarrell, P.A. (1999). Hypertrophy of skeletal muscle in diabetic rats in response to chronic resistance exercise. Rev. Journal of Applied Physiology, ( 87), 1083 – 1086. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/10484579spa
dc.relation.referencesFlaim, K.E. (1980). Effects of diabetes on protein synthesis in fast and slow twich rat skeletal muscle. Rev. American Journal of Physiology endocrinology. (239), 88 – 95. Recuperado el 26 de septiembre de 2012. http://www.ncbi.nlm.nih.gov/pubmed/ 6156604spa
dc.relation.referencesGiorgos, K. (2003). Changes in muscle morphology in diálisis patients after 6 months of aerobic execise training. Nephrol. Dial. Transplant, 9 (18), 1845-1861. Recuperado el 21 de marzo de 2011. Disponible en: http://www.kidney.org/ professionals/kdoqi/guidelines_cvd/pdf/cvd_%20in_dialysis_ composite%20gl.pdfspa
dc.relation.referencesGibson, JN. (1989). Effects of therapeutic percutaneous electrical stimulation of atrophic human quadriceps on muscle composition, protein synthesis and contractile properties. Rev. European Journal Clinical Investigation. (2), 206- 212. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/2499480spa
dc.relation.referencesGlover, EI. (2008). Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. Rev. Journal Physiology, (586), 6049–6061. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18955382spa
dc.relation.referencesGuyton, A. (2011). Tratado de Fisiología Médica. España: Elsevier Health Sciences.spa
dc.relation.referencesHakkinen, K. (1981). Effect of combined concentric and eccentric strength training and detraining on forcetime, muscle fiber and metabolic characteristics of leg extensor muscles. Rev. Seand Journal of Sports Sciences. (3), 50 – 58. Recuperado el 12 de agosto de 2012. Disponible en: http://www.cafyd.com/REVISTA/01001.pdfspa
dc.relation.referencesHood, D. (2001). Biogénesis mitocondrial en músculo esquelético inducida por actividad contráctil. Rev. Journal of Applied Physiology. (90), 1137 – 1157. Recuperado el 12 de marzo de 2011. Disponible en: http://www.efdeportes.com/ efd112/biogenesismitocondrial-en-musculo-esqueletico.htmspa
dc.relation.referencesHoffman, E. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Rev. Cell. (51), 919-928. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/3319190spa
dc.relation.referencesHough, CL. (2006). Neuromuscular sequelae in survivors of acute lung injury. Rev. Clin Chest Med. (27), 691–703. Recuperado el 24 de septiembre de 2012 Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17085256spa
dc.relation.referencesKendrick, J. (1967). Protein synthesis and enzyme response to contractile activity in skeletal muscle. Rev. Nature. (5074), 406 – 408. Recuperado el 27 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/6029535spa
dc.relation.referencesKoolman, J. (2005). Bioquímica. Madrid, España: Médica Panamericana.spa
dc.relation.referencesLi, J, Wang, X, Fraser, S. (2002). Effects of fatigue and training on sarcoplasmic reticulum Ca2+ regulation in human skeletal muscle. Rev. Journal of Applied Physiology. (92), 912 – 922. Recuperado el 26 de septiembre de 2012.spa
dc.relation.referencesKoolman, J. (2005). Bioquímica. Disponible en: http://www. ncbi.nlm.nih.gov/pubmed/11842021spa
dc.relation.referencesLuque, M. (2012). Estructura y Propiedades de las Proteínas. Recuperado el 24 de septiembre de 2012. Disponible en: http: //www.uv.es/tunon/pdf_doc/proteinas_09.pdfspa
dc.relation.referencesInsua, M. Síntesis protéica y Glutamina. Rev. Medicina. (69), 18 – 21. Recuperado el 21 de marzo de 2011. Disponible en: http://www.saic.org.ar/revista/2009_2/saic09.pdfspa
dc.relation.referencesMacDougall J.D. (1979). Mitochondrial volume density in human skeletal muscle following heavy resistance training. Rev. Afed Sci Sports. (11), 164-166. Recuperado el 12 de agosto de 2012. Disponible en: http://ukpmc.ac.uk/abstract/MED/ 158694/reload=0;jsessionid=eBqp6BEiQMv3gBS3Vt5d.12spa
dc.relation.referencesPetersen, AM. (2005). The anti-inflammatory effect of exercise. Rev. Journal Applied of Physiology. (98), 1154–1162. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15772055spa
dc.relation.referencesPlatonov, V. (2002). Teoría General del Entrenamiento Deportivo Olímpico. Barcelona: Paidotribo.spa
dc.relation.referencesRassier, DE. (2009). Molecular basis of force development by skeletal muscles during and after stretch. Rev. Molecular and cellular biomechanics. (4), 229 – 241. Recuperado el 23 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/19899446spa
dc.relation.referencesSale, D. (1982). Neuromuscular adaptation in human thenar muscles following strength training and immobilization. Rev. Journal of Applied Physiology. (53), 419 – 424. Recuperado el 12 de marzo de 2011. Disponible en: http://jap.physiology.org/ content/53/2/419.shortspa
dc.relation.referencesSergeyevich, V. (1998). Fisiología del Deportista. Barcelona: Paidotribo.spa
dc.relation.referencesSiff, M. (2000). Superentrenamiento. Barcelona: Paidotribo.spa
dc.relation.referencesStevens, RD. (2007). Neuromuscular dysfunction acquired in critical illness: A systematic review. Rev. Intensive Care Med. (33); 1876–1891. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17639340spa
dc.relation.referencesSuzuki, A. (1994). Molecular organization at the glycoprotein – complex – binding site for dystrophin - three dystrophin asssociated proteins bind directly to the carboxyl – terminal portion of dystrophin. Eur J Biochem. 2(220), 283-92. Recuperado el 20 de marzo de 2011. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/8125086spa
dc.relation.referencesTanner, BC. (2012). Filament compliance influences cooperative activation of thin filaments and the dynamics of force production in skeletal muscle. Rev. PLoS Computational Biology. (5). Recuperado el 27 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22589710spa
dc.relation.referencesTarnopolsky, M. (1999). Protein metabolism in strength and endurance activities. Rev. Journal of Physiology. (586), 3701 – 3717. Recuperado el 19 de agosto del 2012. Disponible en: http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2008.153916/fullspa
dc.relation.referencesTeijón, J y Cols. (2006). Fundamentos de Bioquímica Estructural. Marid, España: Tebar.spa
dc.relation.referencesTesch, A. (2008). Adaptaciones Enzimáticas generadas por el entrenamiento de fuerza a largo plazo. Suecia. Rev. Grupo Sobreentrenamiento.com. Recuperado el 16 de agosto de 2012. Disponible en: http://www.docstoc.com/docs/3255366/ Adaptaciones-Enzimaticas-Generadas-por-el-Entrenamiento-de-Fuerzaspa
dc.relation.referencesThomas, R. (2007). Principios del entrenamiento de Fuerza y del acondicionamiento físico. Marid, España: Médica Panamericana.spa
dc.relation.referencesWilliams, J. (1998) Functional aspects of skeletal muscle contractile apparatus and sarcoplasmic reticulum after fatigue. Rev. Journal of Applied Physiology. (85), 619 – 626. Recuperado el 12 de marzo de 2011. Disponible en: http://jap. physiology.org/content/85/2/619.shortspa
dc.relation.referencesWilmore, J. y Costill, D. (2004). Fisiología del Esfuerzo y el deporte. Barcelona: Paidotribo.spa
dc.relation.referencesWinkelman, C. (2009). Bed Rest in Health and Critical Illness A Body Systems Approach. Rev. AACN Advanced Critical Care. (20); 254–266. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19638747spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revmovimientocientifico.ibero.edu.co/article/view/163spa
dc.subjectMusculoesqueléticospa
dc.subjectProteínas contráctilesspa
dc.subjectSíntesis de proteínas contráctilesspa
dc.subjectCarga anaeróbicaspa
dc.titleEfectos de la carga física anaeróbica sobre el proceso de síntesis de proteínas contractiles en el músculo esqueléticospa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localArtículosspa
dc.type.localArticleseng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos